Dimensionality-Reducing Expansion, Boundary Type Quadrature Formulas, and the Boundary Element Method

نویسنده

  • Tian-Xiao He
چکیده

This paper discusses the connection between boundary quadrature formulas constructed by using solutions of partial differential equations and boundary element schemes. AMS Subject Classfication: 65D30, 65D32, 65N38.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates

This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...

متن کامل

Variable Transformations for Nearly Singular Integrals in the Boundary Element Method

The Boundary Element Method (BEM) or the Boundary Integral Equation (BIE) method is a convenient method for solving partial differential equations, in that it requires discretization only on the boundary of the domain [2]. In the method, the accurate and efficient computation of boundary integrals is important. In particular, the evaluation of nearly singular integrals, which occur when computi...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Convergence analysis of a new BEM–FEM coupling method for two dimensional fluid–solid interaction problems

We present a new numerical method, based on a coupling of finite elements and boundary elements, to solve a fluid–solid interaction problem posed in the plane. The boundary unknowns involved in our formulation are approximated by a spectral method. We provide error estimates for the Galerkin method, propose fully discrete schemes based on elementary quadrature formulas and show that the perturb...

متن کامل

An Optimal Iterative Process for the Johnson–nedelec Method of Coupling Boundary and Finite Elements∗

We reformulate the discretization of the Johnson–Nedelec method [11] of coupling boundary elements and finite elements for an exterior bidimensional Laplacian. This new formulation leads to optimal error estimates and allows the use of simple quadrature formulas for calculation of the boundary element matrix. We show that if the parameter of discretization is sufficiently small, the fully discr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005